

PHYS 1210: General Physics II

2022 Spring Session			
Total Class Sessions: 25	Instructor: Staff		
Class Sessions Per Week: 5	Classroom: TBA		
Total Weeks: 5	Office Hours: TBA		
Class Session Length (Minutes): 145	Language: English		
Credit Hours: 4			

Course Description:

This course studies the basic theories and principles of physics. Topics covered Electric Charges and Electric Field; Electric Potential; Magnetism; Reflection, Refraction and Diffraction of Lights; Quantum Mechanics; Molecules and Solids; Nuclear Physics; Astrophysics and Cosmology. This course is the continuum of General Physics I. It provides more profound understanding about Physics concepts. It also aims to introduce basic concepts of Physics and use vivid models and teaching measures to develop students' interest on Physics.

Learning objectives:

The ultimate goal is for students to be able to carry out open-inquiry investigations to solidify their knowledge of physics. Also, it requires them to plan and implement data collection strategies in relation to particular scientific questions. Meanwhile, it educates student to connect and relate knowledge across various scales, concepts, and representations in and across domains.

Course Materials:

Physics for Scientists and Engineers, 4th ed. by Giancoli.

Course Assignments:

Quizzes:

There will be 7 quizzes administered through the whole semester and the LOWEST two scores will be dropped. Quizzes will always be completed in the first ten minutes of class. The quiz problems will be similar to problem sets and examples on slides. There will be no make-up quizzes.

Exams:

Midterm Exam

There will be one midterm exam in this course. The midterm exam will be based on concepts covered in class. They will be in-class, close-book and non-cumulative. Final Exam

The final will be cumulative and close-book. Note that the final will not be taken during the

normal class times. Exact time and location for final will be announced later. Problem Sets:

This will cover the following topics: Electric Charges and Electric Field, Magnetism, Diffraction of Light Waves and Polarization, Quantum Mechanics, Molecules and Solids, and Nuclear Physics and Radioactivity.

Attendance:

More than three unexcused absences will result in an automatic reduction in your participation grade, for instance from A- to B+. Your active participation in the class is expected and constitutes part of your grade.

Course Assessment:

Quizzes (5 out of 7)	20%
Midterm Exam	20%
Problem Sets	30%
Final Exam	25%
Attendance	5%
Total	100%

Grading Scale (percentage):

A+	Α	A-	B +	B	B-	C+	С	C-	D+	D	D-	F
98-	93-	90-	88-	83-	80-	78-	73-	70-	68-	63-	60-	<60
100	97	92	89	87	82	79	77	72	69	67	62	

Academic Integrity:

Students are encouraged to study together, and to discuss lecture topics with one another, but all other work should be completed independently.

Students are expected to adhere to the standards of academic honesty and integrity that are described in the Chengdu University of Technology's *Academic Conduct Code*. Any work suspected of violating the standards of the *Academic Conduct Code* will be reported to the Dean's Office. Penalties for violating the *Academic Conduct Code* may include dismissal from the program. All students have an individual responsibility to know and understand the provisions of the *Academic Conduct Code*.

Special Needs or Assistance:

Please contact the Administrative Office immediately if you have a learning disability, a medical issue, or any other type of problem that prevents professors from seeing you have learned the course material. Our goal is to help you learn, not to penalize you for issues which mask your

learning.

Course Schedule:

Class	Topics	Assignments
Class 1~5	 Course & Syllabus Overview Review of the Previous Knowledge Electric Charges and Electric Field Electric Fields and Electrical Charges Electric Theories, Distribution and Electric Charges Electrostatic Generators Gauss's Law Electric Potential Potential, Capacity, and the Electric Condenser Capacitance, Dielectrics, Electric Energy Storage Electric Currents and Resistance DC Circuits Electrical Currents and Circuits The Simple Voltaic Cell and its Action Practical Voltaic Cells 	 Quiz 1&2 Textbook review Finish the hard copy of problem set about Electric Charges and Electric Field assigned by teacher
Class 6~10	 Magnetism The Magnetic Effect of Electric Currents Electrical Measurements Ohm's Law and Electrical Circuits Grouping of Cells and Measuring Resistance Sources of Magnetic Field Electromagnetic Induction and Faraday's Law Energy in Magnetic Field Inductance Ampere's Law Magnetic Vector Potential Magnetic Force on a Moving Charge Electromagnetic Oscillations and AC Circuits Maxwell's Equations and Electromagnetic Waves 	 Quiz 3&4 Textbook review Finish the hard copy of problem set about Magnetism assigned by teacher

		1		
	• General Properties and Applications of Maxwell's			
	Equations			
	• Light: Reflection and Refraction			
	Lenses and Optical Instruments			
	• The Wave Nature of Light; Interference			
	• Diffraction			
	Fraunhofer Diffraction			
	Diffraction of Light Waves	• Midterm		
		Textbook review		
	 Fraunhofer Diffraction by a Single Opening 	• Finish the hard copy		
01 11 15	 Fraunhofer Diffraction by a Double Slit 	of problem set about		
Class 11~15	 Fraunhofer Diffraction by an Ideal Grating 	Diffraction of Light		
	- Ensenal Diffusction	Waves and		
	Fresnel Diffraction	Polarization assigned		
	Small Circular Opening and Obstacle	by teacher		
	Sinan Circular Opening and Obstacle			
	Polarization			
	> Polarization of Light and State of Polarization			
	> Optical Activity			
	The Special Theory of Relativity			
	• Early Quantum Theory and Models of the Atom			
	Quantum Mechanics			
	Photoelectric and Compton Effects	• Quiz 5&6		
	Wave Nature of Particle	Textbook review		
Class 16~20	Interpretation of Quantum Mechanics and	• Finish the hard copy		
	Schrödinger Equation	of problem set about		
	Schrödinger's Picture and Particle in a Potential	Quantum Mechanics		
	Box	assigned by teacher		
	Time Dependent Schrödinger's Equation			
	Quantum mechanics of Atoms			
	Molecules and Solids	• Quiz 7		
	Eras Flootron Approximation	• Finish the hard copy		
	Free Electron Approximation Electron Spin Decomposition	of problem set about Molecules and Solids		
	 Electron Spin Paramagnetism Block Theorem: Periodic Potential 	and Nuclear Physics		
Class 21~25	Block Theorem. Periodic Potential	and Radioactivity		
C1055 21-25	• Nuclear Physics and Radioactivity	assigned by teacher		
		Final exam		
	Semi-classic Models of Nucleus	(cumulative) TBA		
	 The Shell Model of the Nucleus 			
	 Radioactive Decay of Nucleus 			

 Nuclear Fission Nuclear Fusion 	
 Nuclear Energy; Effects and Uses of Radiation Elementary Particles Astrophysics and Cosmology Wrap-up 	